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Common Copy Number Variation Detection From
Multiple Sequenced Samples

Junbo Duan, Hong-Wen Deng, and Yu-Ping Wang∗, Senior Member, IEEE

Abstract—Common copy number variations (CNVs) [1] are
small regions of genomic variations at the same loci across mul-
tiple samples, which can be detected with high resolution from
next-generation sequencing (NGS) technique. Multiple sequencing
data samples are often available from genomic studies; examples
include sequences from multiple platforms and sequences from
multiple individuals. By integrating complementary information
from multiple data samples, detection power can be potentially
improved. However, most of current CNV detection methods of-
ten process an individual sequence sample, or two samples in an
abnormal versus matched normal study; researches on detecting
common CNVs across multiple samples have been very limited but
are much needed. In this paper, we propose a novel method to detect
common CNVs from multiple sequencing samples by exploiting the
concurrency of genomic variations in read depth signals derived
from multiple NGS data. We use a penalized sparse regression
model to fit multiple read depth profiles, based on which common
CNV identification is formulated as a change-point detection prob-
lem. Finally, we validate the proposed method on both simulation
and real data, showing that it can give both higher detection power
and better break point estimation over several published CNV de-
tection methods.

Index Terms—Copy number variation (CNV), �-0 norm penalty,
model selection, next generation sequencing (NGS), Schur comple-
ment, structured sparse modeling, the 1000 genomes project.

I. INTRODUCTION

G ENETIC factors play an important role in the develop-
ment of a disease. It has been reported that there are

tens of thousands of genetic disorders (http://www.ncbi.nlm.nih.
gov/Omim/mimstats.html ). Among various mutations of human
genomes, the copy number variation (CNV) is a sort of struc-
tural variation (SV) frequently observed in genomes. CNV is
generally referred as a duplication or deletion of DNA sequence
of length larger than 1 kbp [2]. Similar duplication and dele-
tion events also occur in somatic cells, which are termed copy
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number alterations in oncology. There are evidences that CNV
can convey human phenotypes from sporadic diseases [3]. It is
believed that, when a CNV region harbors a dosage-sensitive
segment, the gene expression level varies, and consequently
leading to an abnormal phenotype [4].

Fluorescence in situ hybridization, and more recently, array
comparative genomic hybridization (aCGH) techniques have
been widely used to detect CNVs, but with a low resolution
of about 5∼10 Mbp and 200 bp to 10∼25 kbp [5], [6], re-
spectively. In the last few years, next generation sequencing
(NGS) technologies allow the screening of human genomes
at an unprecedented resolution. NGS platforms produce mil-
lions or billions of short reads from shotgun sequencing, and
these short reads can be used for de novo assembly [7], single
nucleotide polymorphism (SNP) calling [8], SV detection [9],
etc.

Since the work of Korbel et al. [10], Mills et al. [11], great ef-
forts have been made to develop CNV detection methods from
NGS data [5], [12]–[22]. We recently conducted a compara-
tive study of several prominent CNV detection methods [23],
and proposed a robust detection method with a novel sparse
regression model [24]. The CNV detection methods from NGS
can be mainly divided into four categories [25]: depth of cov-
erage (DOC)- or read depth (RD)-based, paired-end mapping
(PEM)-based, split read-based, and assembly-based methods.
The canonical procedure of DOC-based method usually con-
sists of the following seven steps: 1) Map (or align) sequencing
reads (singled end or paired end) to a reference genome (e.g.,
NCBI37/hg19) by using short sequencing mapping tools, e.g.,
Bowtie [26], MAQ [27]. These mapping tools usually output
SNP and short indel callings as byproducts. Mapping loci, as
well as mapping quality, are stored in a SAM file, or a compacted
BAM file. 2) Calculate the so-called RD signal. RD is the read
count within a fix-sized nonoverlapping bins [5], [12], or a slid-
ing window [13]. 3) Normalize the RD signal. For example, a
GC-content correction is usually performed [28] to reduce bias.
4) Segment normalized RD signal into regions with different
depths. Because NGS is characterized by short-gun sequencing,
RD reflects copy number status. Most of RD loci are in normal
regions; a plateau in RD profile reflects the copy gain status,
while a basin reflects the copy loss status. Classical segmentation
algorithms, such as the circular binary segmentation (CBS) [29]
and hidden Markov model have been employed [14], [20].
5) Determine copy number status of each segment by a sta-
tistical hypothesis testing, e.g., event-wise testing (EWT) [5]. A
hypothesis testing assumes that an RD obeys the Poisson [30]
or negative-binomial distribution [20]. 6) Merge consecutive
segments that share the same copy number status [12]. 7) Call
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CNVs, including CNV type (gain or loss), starting locus and
length, copy number status. We note that not each aforemen-
tioned step is necessary. For example, for those methods that
detect CNVs from only one sample [5], [21], Step 3) is nec-
essary, but for those case-control methods [12], [13], i.e., both
abnormal and matched normal samples, Step 3) is not needed.
CNV-seq and EWT [5] do not use Step 4), i.e., segmentation
algorithms.

RD signals are very noisy because of several factors: sequenc-
ing error, mapping error (multiple mapping, mismatching), and
the presence of SNPs and indels. Therefore, most of the afore-
mentioned methods, which focus on detection from single sam-
ple, or two samples as in aCGH platforms, achieve low power
and high false positive rate. A simple approach to improve de-
tection power is to increase the sequencing coverage. However,
this approach will be at greater sequencing cost; an alternative
cost-efficient study design is to sequence large samples with
a medium or low coverage [8]. With the continuous decrease
of sequencing cost, sequencing multiple times or with multiple
platforms will be increasingly used. Multiple sequencing can
reduce the system error introduced by an individual sample or
platform, with the potential to improve the detection power [31].
In addition, it was reported that different complex diseases might
share the same common CNVs [32], which could be detected
with multiple sequencing data. To this end, the detection of
common CNVs from multiple sequencing data is much needed,
promising to give higher detection power.

In this paper, we propose a novel method to detect CNVs from
multiple sequencing data. The proposed method first fits mul-
tiple RD profiles from several samples using an �-0 penalized
least-square regression model. Then, CNV detection is obtained
with a statistical testing. The objective function used in the re-
gression model consists of two terms. The first is a data fitting
term, i.e., the least squares of fitting error, and the second is
a penalty term, i.e., the �-0 norm of change-points of the RD
signal. Different from our previous work [33], the new objective
function explores the concurrency of common CNVs by using
a block-wise �-0 norm. So, if a CNV at the same locus shows
up across multiple sequencing data, a block-wise sparse vector
(regressor) will be obtained in the regression model.

In order to validate and evaluate the performance of our
model, we tested it on simulated data and compared with
cn.MOPS [30], a method recently proposed to detect CNVs
from multiple samples. We also tested our method on real data,
and compared it with two other methods: CNVnator [21] and
EWT [5]. The real data include a 17 replication raw sequencing
dataset of a HapMap sample, a mapped dataset from multiple
sequencing platforms, and a mapped dataset of a family trio
from a pilot study of the 1000 Genomes Project.

II. METHODS

A. Modeling

After preprocessing, we have an array of signals yj =
[y1j , y2j , . . . , yM j ]T , j = 1, . . . , N , i.e., the RD profile of the
jth sample, where M is the number of bins. In the following, we
model the CNV detection as a change-point detection problem,

Fig. 1. Schematic demonstration of the approximation of the RD signals Y
with a sparse vector X and a set of step functions. The columns of Y and A
(step functions) are displayed in wave forms. Red color indicates active status.
The row-wise �-0 norm of matrix X is 2. In this case, there are two nonzero
rows in X corresponding to the loci of two change-points in Y .

similar to our previous work based on aCGH platform [34].
“From statistical point of view, a change-point is defined as
a point (either an index or a spatial location) before which a
random sequence follows a distribution with certain parame-
ter(s), and after which the random sequence follows another
distribution [or the same distribution as before but with differ-
ent parameter(s)]” [34]. Specifically, for our problem, the copy
number status can be reflected by the RD signal, where the re-
gions with different copy numbers follow different distributions
(especially the means). Therefore, we define a change-point as
the locus where the mean of RD signal changes significantly. In
other words, a change-point corresponds to the boundary of a
CNV region.

To detect change-points from these RD signals, we use the
linear combination of a set of step functions (A) to approximate
yj (see Fig. 1)

yj ≈ Axj (1)

where A is an Heaviside dictionary, consisting of a set of step
functions defined at different loci

A =

⎡
⎢⎢⎢⎣

1 0 . . . 0

1 1
. . .

...
...

...
. . . 0

1 1 . . . 1

⎤
⎥⎥⎥⎦ (2)

and xj reflects the amplitudes of change-points. Because there
is a limited number of change-points (boundary of CNVs) in the
genome, xj is assumed to be a sparse vector, i.e., most entries
of xj are zeros. The �-0 norm, ‖xj‖0 , has been widely used
to measure the sparsity of a vector. Therefore, the detection of
CNVs from yj can be modeled as [35]

xj (λ) = arg min
xj

‖yj − Axj‖2 + λ‖xj‖0 (3)

where the penalty parameter λ controls the tradeoff between
the data fitting and the regularization term. The regularization
or penalty term incorporates prior knowledge about data into
the model [24]. It is obvious that large λ yields less number of
change-points, and vice-versa.

The sparse model (1) for finding CNVs from individ-
ual sample can be generalized to multiple samples Y =
[y1 ,y2 , . . . ,yN ] as follows:

X(λ) = arg min
X

‖Y − AX‖2 + λ‖X‖0 (4)
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where X = [x1 ,x2 , . . . ,xN ] contains the coefficients of all N
samples, and its element xij corresponds to the amplitude of the
change-point at ith locus in jth sample. ‖X‖0 is the row-wise
�-0 norm of matrix X (see Fig. 1), which is defined as

‖X‖0 =
M∑
i=1

ι(x̃i) (5)

where x̃i is the ith row of X , and

ι(x̃i) =
{

0, x̃i = 0
1, otherwise.

(6)

The entries of x̃i reflect the amplitudes of change-points. If
all samples have a change-point at the locus i, x̃i should be a
nonzero vector. Therefore, ι(x̃i) = 1 indicates that there is a
change-point at ith locus, while ι(x̃i) = 0 indicates no change-
points. By introducing the row-wise �-0 norm, we force the
change-points from multiple samples to be aligned at the same
locus.

B. Optimization Algorithm

The problem in (3) can be solved approximately with greedy
algorithms such as matching pursuit [36], orthogonal matching
pursuit (OMP) [37], and orthogonal least squares (OLS) [38].
However, when matrix A is highly correlated, OMP- and OLS-
based methods might fail. Therefore, we propose the single best
replacement (SBR) algorithm that we developed [39] to solve
the problem in (3). To solve the more general problem in (4), in
this paper, we extend the algorithm and develop a continuation
block-wise SBR (CBSBR). The acceleration issue is discussed
in Appendix A.

1) Estimating a Solution When λ is Fixed: First, we intro-
duce an active setA ⊆ {1, 2, . . . ,M}, which indicates the activ-
ity status of the columns of matrix A. The presence of an index
i in the active set indicates that the ith column of A is used to
fit the data Y , and the ith row of X is set to be nonzeros (see
Fig. 1). If the active set A is known, we can have the extracted
submatrix AA = {ai |i ∈ A}, and the least-square solution

XA = A†
AY (7)

where A†
A = (AT

AAA)−1AT
A is the Moore–Penrose inverse [40]

of AA. X can be reconstructed from XA by inserting zeros into
nonactive rows. Because the least-square solution XA normally
has no zero row, ‖X‖0 is equal to the cardinality of A, i.e., the
number of elements in A, which is denoted by k. In summary,
given A with k elements, we consecutively have AA of size
M × k, XA of size k × N , and the equivalent cost function

JA(λ) � ‖Y − AAXA‖2 + λ‖XA‖0 = EA + λk. (8)

where

EA � ‖Y − AAXA‖2 . (9)

To have a better fitting quality, more columns are needed to
be active, suggesting larger k. Therefore, the basic idea of the
proposed algorithm is to include/exclude an index into/from A

TABLE I
BSBR ALGORITHM

iteratively, which is called a single replacement

A • i =
{
A ∪ {i}, if i 	∈ A
A\{i}, otherwise.

(10)

We initialize the block-wise SBR (BSBR) algorithm with
A = ∅. Then, at each iteration, we test all possible M single
replacements, and find the “best” update in a deepest decent
manner, i.e., the replacement that can most reduce cost function
J . The iteration terminates when there is no single replacement
that can further reduce the cost function. Since the number of
possible single replacement in BSBR algorithm is finite, it ter-
minates after a finite number of iterations, and converge to a
local minimum [39]. Table I summarizes the BSBR algorithm,
and the acceleration is discussed in Appendix A. Since the total
number of single replacement increases linearly with respect to
M , the computation complexity is proportional to M . For the
sample size N , Equations (26) and (30) in Appendix A show
that N has very limited impact on the computational complexity.

2) Model Selection: Since the penalty parameter λ controls
the tradeoff between the data-fitting and penalty term in the
problem of (4), it is of great importance to have a good esti-
mate of λ. When the prior knowledge of a system is known, λ

could be estimated from system parameters [39]. When the prior
knowledge is unknown, classical model selection methods can
be used. Since different models correspond to different sets of
active columns, direct estimation of λ could be replaced by the
selection of candidate models. Therefore, we have to estimate a
set of candidate models first.

A simple method to estimate a set of candidate models is
to solve the problem (4) at a uniform or logarithm grid of λ.
However, this method is not efficient, since the solution is a set
of piecewise constant [41] with respect to λ. When the grid is too
fine, we may find the same candidate model at several different
λ’s; when the grid is too coarse, we may miss some candidate
models. We adopt the idea that we proposed in [41] to find the
critical values of λ. Then, with the calls of BSBR algorithm at
these critical λ’s, all candidate models can be obtained.

We note that X(+∞) = 0 and X(0) = A+Y . Inspired by
the homotopy algorithm [42]–[44], the proposed CBSBR algo-
rithm starts with λ = +∞, and then decreases λ adaptively. At
each critical λ, BSBR is called to estimate current solution, and
next λ is calculated according to current solution. Specifically, if
at current λq active set is Aq , then the next maximal λq+1 < λq

at which the active set changes [41] should satisfy

JAq
(λq ) = JAq ∪l(λq+1). (11)
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TABLE II
CBSBR ALGORITHM

Up to a few manipulations of (8) and (11), the value of λq+1 is

λq+1 = max
i 	∈Aq

{EAq
− EAq ∪l}. (12)

Table II summarizes the procedure of the CBSBR algorithm.
The stopping condition could be either the least-square error EA
or sparsity level k reaches some predefined value.

Once all possible models are known, we could use classi-
cal model selection methods such as cross-validation [45], L-
curve [46], Akaike information criterion [47], and Schwarz in-
formation criterion (SIC) [48]. Since the SIC has been proven to
deliver robust estimate as shown in our previous work [34], [49],
we use the SIC in our experiments.

For a candidate model X(λq ), its SIC is defined as

SIC(q) = k ln(M) +
‖Y − AX(λq )‖2

σ2
n

(13)

where k is the row-wise �-0 norm of X(λq ) as introduced in
Section II-A, and σ2

n is the variation of noise in Y , which can
be estimated from non-CNV regions. The best candidate model
can be obtained with the lowest SIC, giving the optimal tradeoff
between fitting quality and model complexity k.

After the best model is selected, CNVs can be detected from
the recovered RD signal AX(λq ∗) by thresholding with upper
and lower cutoff values, where q∗ is the index of best model.
These cutoff values can affect sensitivity and specificity, so
we employ the histogram (or distribution) of the RD signal to
estimate them. Since sequencing may have different coverages,
we estimate the two cutoff values (upper and lower) for each
RD signal, such that the portion of tail areas is lower than a
predefined value.

We briefly summarize the proposed method. First, we use the
CBSBR algorithm, which calls BSBR algorithm iteratively, to
estimate a set of solutions with respect to continuous change of
penalty parameter λ. Second, we use the SIC method to select
the best model from this set of solutions. Finally, the regions of
the smoothed RD signal that are above upper threshold or below
lower threshold are considered to be duplications or deletions
of CNV regions, respectively.

III. RESULTS

In order to test the performance of the proposed method, we
compared it with three published methods, i.e., CNVnator [21],
EWT [5], and cn.MOPS [30]. The first two are dedicated to
detect CNVs from single data sample, while the last one focuses
on the detection from multiple data.

Fig. 2. Example of CNV detection by the proposed method. Blue dots are RD
signals with dispersion level d = 0.1 and Bernoulli parameter p = 0.8, red thin
lines are smoothed signals, and red thick lines are detected CNV regions.

We tested the performance of the proposed method on both
simulated and real data from human subject studies. In simu-
lations, we tested in terms of sensitivity, specificity, and break
point locus estimation, with respect to different dispersion level,
sample size, and the CNV frequency across samples. In real-data
processing, we tested three real datasets. The first dataset con-
sists of raw data of a HapMap TSI human subject, whose genome
was sequenced 17 times repeatedly; the second dataset consists
of mapped data of a HapMap YRI human subject with three
popular sequencing platforms; and the third dataset consists of
mapped data of a family trio in the 1000 Genomes Project pilot
study.

All computations were carried out on a PC with a dual-core
2.8-GHz x86 64-bits processor and 8-GB memory, and the com-
putational time to screen a whole genome with the resolution
of 1 kbp is approximately 10 h with a peak memory usage of
700 MB.

A. Simulations

First, we tested the robustness of the proposed method with
respect to different dispersion level. Because of the presence of
SNPs, indels, base pair calling error, alignment error, as well
as the randomness of shotgun sequencing, RD signals are of-
ten poorly modeled to be the Poisson distribution, where the
mean and variance are assumed to be equal. Instead, the neg-
ative binomial distribution was proposed [20], [50], where a
positive dispersion parameter d is introduced to tune the vari-
ance to mean ratio (see Appendix B). When d is close to 0, the
negative binomial distribution approaches to the Poisson distri-
bution asymptotically; when d increases, the variation to mean
ratio increases accordingly, indicating higher dispersion level.
Fig. 2 presents an example when the dispersion level d is 0.1.
The RD signals are displayed with blue dots, and the smoothed
signals are shown as red curves.

The simulated RD signals consist of N signals generated
with bin size of 100 bp, and with average RD of 200. Since the
CNVs of large sizes are relatively easy to detect, we simulated
nine artificial CNVs of small sizes ranging from 1 to 4 kbp, with
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Fig. 3. ROC (left) and error bar (right) plot with different dispersion level. It
is shown that with the decrease of dispersion level, FPR decreases, while TPR
increases, and break point loci estimation improves.

copy numbers 0, 1, 3∼6 (see Fig. 2). Note that the copy number
1 (heterozygous deletion) and 3 (heterozygous duplication) are
especially challenging to detect, since they are close to normal
copy number 2 [17].

A number of dispersion parameter d = 0.001, 0.01, 0.1, 0.5,
1 with sample size N = 6 were tested. At each dispersion level,
1000 random’s Y were simulated to follow the negative bi-
nomial distribution, and the mean was fixed to 200. Then, the
proposed method was employed to process each data. The de-
tected CNVs were compared with the ground truth, yielding
the receiver operating characteristic (ROC) as shown in the left
panel of Fig. 3. An ROC shows the tradeoff between sensitivity
and specificity, where each point represents the average of 1000
replications under a given dispersion level. A point in the ROC
shows the true positive rate (TPR, equivalent to sensitivity or re-
call) versus false positive rate (FPR, equivalent to 1-specificity).
TPR and FPR are defined in unit of base pair (bp). The TPR is
the ratio between number of base pairs in the detected CNVs that
overlap with the ground truth, and those in the ground truth; The
FPR is the ratio between number of base pairs in the detected
CNVs that do not overlap with the ground truth, and those not
in the ground truth.

It is shown in the left penal of Fig. 3 that with an in-
crease in dispersion level, the detection quality degenerates,
especially when the dispersion level is greater than 0.1. Fur-
ther, studies show that, when the dispersion level is greater
than 0.1, nearby CNVs are difficult to be distinguished, which
are considered to merge together. As a result, FPR increases
significantly.

To further evaluate the performance of detection, we tested
the precision of detecting break points. For two overlapping
CNVs (i.e., one is from the detection output, while the other is
from the ground truth), the differences between the left and right
loci are calculated as the break point estimation error. The mean
and standard deviation are calculated after 1000 replications.
As shown in the right panel of Fig. 3, the accuracy of break
point estimation improves with the decrease of the dispersion
level. As mentioned previously, when the dispersion level is
greater than 0.1, nearby CNVs merge together; so the quality of
break point estimation degenerates greatly. For this reason, the
right panel of Fig. 3 only displays the estimation error with the
dispersion level of 0.1, 0.01, and 0.001.

To test the effect of sample size N on the FPR, TPR and
break point estimation, datasets consisting of 1, 2, 4, 6, and 8

Fig. 4. ROC (left) and error bar (right) plot with different sample size. It
is shown that with the increase of sample size, FPR decreases, while TPR
increases, and break point loci estimation improves.

Fig. 5. ROC plots with different Bernoulli parameter p and dispersion level
d with the proposed method (left) and cn.MOPS (right). It is shown that the
proposed method achieves higher detection power compared with cn.MOPS.

samples were simulated, with the dispersion level being fixed
to 0.1. Both the ROC and error bar for the estimations of break
points are plotted in Fig. 4. The results indicate that multiple
samples can improve detection power, decrease false detection
rate, and improve break point localization. To keep the detection
power above 0.9, in other simulations, the sample size N is
fixed to 6.

The cn.MOPS method was recently developed to discover
CNVs from multiple samples. However, it could only detect
variations when the copy numbers at the same loci are different
across samples. So in the previous simulations, where the copy
number status across multiple samples is the same, cn.MOPS
detected no variations. In order to compare the performance of
the proposed method with that of cn.MOPS, a Bernoulli parame-
ter p is introduced to denote the CNV frequency across multiple
samples. Therefore, the previous simulations correspond to the
case where p = 1. In the following simulations, data with p =
0.2, 0.5, and 0.8 were generated. Fig. 2 presents an example
when the Bernoulli parameter p is 0.8. Fig. 5 presents the ROC
plots, which summarizes the results of this comparative study.
For the proposed method, when the dispersion level is relatively
high (d > 0.1), the detection power decreases significantly. But
when d � 0.1, the influence of p on the detection power is very
limited. When d(�0.1) is fixed, p = 0.8, 0.5, 0.2 yields the low-
est, second lowest, and highest FPR, respectively. For cn.MOPS,
p = 0.5 yields higher power when compared with p = 0.2 and
0.8. Note that at each fixed configuration (p, d), the proposed
method always yields higher TPR than that of cn.MOPS, while
at the cost of increased FPR.
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TABLE III
TPR AND FPR PERFORMANCE OF THE SEQUENCING DATA OF NA20755

B. Real Data Processing

1) Multiple Sequencing Data From a Single Individual: The
genome of a HapMap TSI sample (NA20755) was sequenced
17 times by a Solexa Genome Analyzer II with low coverage
ranging from 0.13 to 0.21, and with read length 37 bp [51]. We
downloaded this dataset from the FTP of DNA Data Bank of
Japan at http://www.ddbj.nig.ac.jp/ , and then mapped pair-end
reads to the NCBI36/hg18 reference genome with Bowtie [26],
allowing no more than two mismatches with “best” option on.
RD signals were extracted from the 17 alignment BAM files
using the tool in cn.MOPS package, yielding 23 data matrices,
corresponding to 22 autosomes and X chromosome. To have an
average of read counts around 100, the bin size was set to 25 kbp.
The RD bias caused by GC-content was corrected by using the
method introduced by Abyzov et al. [21], with the GC-content
profile of RDXplorer [5]. The final step of normalization is to
correct biases caused by the coverage difference, so each RD
signal was scaled such that the mean of read counts is 100.

Since the 17 sequencing data are from the same sample, at
a given bin normalized RD signals should have no significant
difference, that is, copy numbers should be equal. So, we de-
signed the following analysis procedure. Each autosome was
processed with three replications. In each replication, we ran-
domly implanted three CNVs of size 75, 150, and 200 kbp into
the chromosome. For non-CNV regions, RD signals from the
autosome were used; while for CNV regions, RD signals from X
chromosome were used according to the copy number. A CNV
could be either a gain (copy number 3) or a loss (copy number
1) with equal probability. For a gain (or loss) CNV, the copy
number could be either 3 (or 1) or 2 with a frequency of 0.9 and
0.1, respectively.

Data matrices were processed by both cn.MOPS and the pro-
posed method. For cn.MOPS, the upper and lower cutoff values
were set to 0.5 and −0.5 respectively; the minimum number of
segments, a CNV should span was set to 3. The CBS [29] was
used as the segmentation algorithm; and other parameters were
set as default. For the proposed method, five percent of tail area
was used to determine the cutoff values, the minimal size of a
segment was set to 3 bins, and the noise variance σ2

n in (13)
was estimated along whole genome, since the portion of CNV
regions is negligible with respect to whole genome.

The results are listed in Table III, where the TPR and FPR for
cn.MOPS are 0.49 and 8e-4, while for the proposed method they
are 0.68 and 5e-4, respectively. We also repeated experiments,
with the Bernoulli parameter p = 0.5 and 0.2 (the probability
of copy number 3 or 1, versus 1 − p the probability of copy
number 2). As shown in this table, for the proposed method,
the TPR/FPR increases/decreases with the increase of p. For

Fig. 6. Venn diagrams of three platforms. The first two panels show the
overlapping of CNVs (in the unit of 100 bp) detected by CNVnator (left) and
EWT (middle). In the last panel, the set labeled with “CNVnatorEWT” is the
intersection of CNVs detected with CNVnator and EWT.

cn.MOPS, it performs well with p = 0.5, where the variation of
copy numbers across samples reaches the peak value.

2) Sequencing Data From Multiple Platforms: The 1000
Genomes Project ([51], http://www.1000genomes.org/) pro-
vides data acquired from multiple sequencing platforms. We
downloaded the mapped sequencing data (BAM files) of a YRI
sample with Corelli/HapMap ID NA19240, with the platforms
of Roche 454, Illumina SLX, and ABI SOLiD. The short reads
were mapped already by using SSAHA2 [52], MAQ [27], and
Corona lite [53], respectively.

The RD signals were extracted from BAM files by using the
SAMtools [27]. Bin size was set to 1 kbp, yielding mean RD
13 for 454, 84 for SLX, and 220 for SOLiD, respectively. Since
the coverage is significantly different, each RD signal after the
GC-content correction was scaled such that the mean value is
100.

CNVnator [21] and EWT [5] were used to process the three
data one by one. The bin size of CNVnator is set to 300 bp,
and the consecutive window number of EWT is set to 8. The
detected CNVs are displayed in the first two panels in Fig. 6.
Since data from the three platforms are complementary, the
union of the three platforms was calculated for both CNVnator
and EWT. The intersection of two unions (i.e., CNVnator and
EWT union) is displayed in the right panel of Fig. 6 with the
label “CNVnatorEWT.”

The overlaps of CNVs from the three methods (CNVna-
torEWT, cn.MOPS, and the proposed one) are displayed in
the right panel of Fig. 6. The overlap is measured in the unit
of 100 bp. If two units share more than one base pair over-
lap, it counts for one overlapped unit. It is shown that the de-
tection power of cn.MOPS and the proposed method is 73%
and 88%, respectively. The detection powers of CNVnator with
454, SLX, and SOLiD platforms are 72%, 73%, and 64%; and
those of EWT are 58%, 65%, and 85%, respectively. The result
demonstrates that the detection power is increased with multiple
platforms over single one.

3) Sequencing Data From Multiple Individuals: We down-
loaded the aligned sequencing data of chromosome 21 of a CEU
family trio from the 1000 Genomes Project pilot study. This
family trio has European ethnicity, and consists of NA12891
the father, NA12892 the mother, and NA12878 the daughter.

We used the same procedure with the same settings as in the
previous study to analyze data. Fig. 7 shows the comparison of
CNVs detected by the proposed method, EWT, and CNVnator,
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Fig. 7. Venn diagrams of the CEU family trio. The top three depict the overlaps
of CNVs detected from three CEU samples; the lower three depict the results
from CNVnator, EWT, and the proposed method.

Fig. 8. Comparison with cn.MOPS. “Proposed(1)/(2)/(3)” represents the
CNVs detected by the proposed method that show up at least once/twice/three
times among the three CEU samples.

respectively. In the first row, three Venn diagrams are displayed
with respect to three samples. It is shown that, on average 70% of
detected CNVs with the proposed method overlap with at least
one alternative method (CNVnator or EWT). For CNVnator and
EWT, this value is 52% and 43%, respectively, suggesting that
the proposed method can detect CNVs with higher consistency.
In the second row, three diagrams are displayed with respect
to different methods. On average, 82% CNVs detected by the
proposed method show up at least twice among the three CEU
samples; this value is 65% for CNVnator, and 32% for EWT.
These results suggest that the proposed method can detect more
common CNVs.

Fig. 8 shows the comparison of CNVs detected by the pro-
posed method and cn.MOPS. The “proposed(1)/(2)/(3)” repre-
sents CNVs detected with the proposed method that show up at
least once/twice/three times among three samples, respectively.
It is shown that 82% CNVs detected by the proposed method
show up at least twice among three samples, and 63% among
all three. It is also shown that 36% overlaps with the result of
cn.MOPS.

Further study shows that, among the CNVs that show up
twice in the three family members, 11% are shared by the father
and mother, 22% by the father and daughter, and 67% by the
mother and daughter. Interestingly, the Venn diagrams in Fig. 7
labeled with “CNVnator” and “proposed” show that the daugh-
ter (NA12878) shares more CNVs with her mother (NA12892)

than her father (NA12891), suggesting that the daughter is ge-
nomically closer to her mother than her father. This is consistent
with the results of Magi et al. [54], and ours reported before [55].

IV. CONCLUSION AND DISCUSSION

In this paper, we proposed a method to detect common CNVs
from multiple NGS data, which are often measured with differ-
ent experimental replications, multiple platforms, and multiple
individuals. By introducing the row-wise �-0 norm in the regres-
sion model, the concurrency of CNV across multiple samples
can be captured. We also proposed a novel numerical method,
i.e., CBSBR algorithm to solve the regression model and further
used the model to fit multiple RD signals, based on which CNVs
can be inferred. We note that CBSBR can be used to other ap-
plications where matrix A might have other structure than the
Heaviside dictionary used in this paper.

We tested the performance of the proposed method on both
simulated and real data. The simulation results show the perfor-
mance of detection in terms of the dispersion level and the CNV
frequency across samples. It suggests that the detection power,
false positive rate, and break point loci estimation can all be im-
proved with the increase of sample size. For real-data process-
ing, we analyzed the 17 replication data from a single individual
and multiple datasets from three popular sequencing platforms.
The results indicate that by integrating multiple datasets with
complementary information, the proposed method outperforms
single-sample-based methods. We also used the data from a
family trio, suggesting that the proposed method can be used to
discover genetic ethnicity in terms of CNVs.

From both simulation and real data analysis, we found that
CNVs with a high frequency across samples can be detected with
the proposed method, which falls into our expectation. Since the
proposed method is based on the concurrency of CNVs across
multiple samples, higher the frequency that a CNV shows up,
easier will it be detected. On the contrary, CNVs with a mod-
erate frequency of presence can be detected by cn.MOPS by
capturing the variation of copy number across samples. How-
ever, if copy numbers are the same across samples, these CNVs
can be missed by cn.MOPs. So, when data are highly redundant
(i.e., replication data), we recommend the use of the proposed
method. When data are from different samples, we recommend
that these two methods should be combined to take full advan-
tage of both approaches.

Both DOC and PEM signature can provide useful and com-
plementary information [5], [54]: the DOC-based methods can
detect large-size events, while the PEM-based methods can de-
tect small-size events with better precision of finding break point
locus. Therefore, some approaches were proposed to combine
both methods. For example, CNVer [15] and cnvHiTSeq [50]
combined both DOC and PEM signatures to improve break
point detection. He et al. [56] used discordant read pairs and
unmapped reads that span break points to detect CNVs, and the
precision of detecting CNV break point can reach as high as
base pair level. So our future work will consider the incorpora-
tion of multiple signatures into the model, which could further
improve the CNV detection accuracy.



DUAN et al.: COMMON COPY NUMBER VARIATION DETECTION FROM MULTIPLE SEQUENCED SAMPLES 935

The MATLAB code of the proposed CBSBR algorithm can
be downloaded at http://www.mathworks.com/matlabcentral/
fileexchange/36518-continuation-block-wise-sparse-approxi-
mation. Other codes are available upon request.

APPENDIX A
ACCELERATION OF THE CBSBR ALGORITHM

At each iteration of CBSBR, we have to calculate the least-
square solution (7) repeatedly. Since the computational com-
plexity of the inverse of matrix AA is O(k3), where k is the
column dimension of AA, computational burden is heavy when
considering large number of single replacements. In this Ap-
pendix, we present an acceleration algorithm, which is based on
the iterative solution of nested least-square problems [57].

The main idea is to calculate the increment of the cost function
JA∪l − JA without explicit calculation of the inverse of AA∪l in
inclusion cases, or JA′\l ′ − JA′ without the inversion of AA′\l ′
in exclusion cases.

To be specific, given A and l 	∈ A, let’s define

G = [AA,al ]

φA = (AT
AAA)−1

φG = (GT G)−1

w = AT al .

From (7) and (9), up to a few manipulations, we have

JA = EA + λk

= ‖Y ‖2 −
N∑

i=1

yT
i AAφAAT

Ayi + λk (14)

JG = JA∪l

= EG + λ(k + 1) (15)

= ‖Y ‖2 −
N∑

i=1

yT
i GφGGT yi + λ(k + 1). (16)

From Schur complement lemma [40], we have

φG =
[

φ11 φ12
φ21 φ22

]
(17)

with

φ11 = φA + φ−1
22 φ12φ21 (18)

φ12 = −φ22φAw (19)

φ21 = φT
12 (20)

φ22 =
(
aT

l al − wT φAw
)−1

. (21)

Furthermore,

φG =
[

φA 0

0T 0

]
+ φ22

[
φAw
−1

] [
wT φT

A −1
]
. (22)

1) For inclusion cases, calculate JA∪l − JA when φA is known:
From (14), (16), and (22)

JA∪l − JA

=
N∑

i=1

yT
i

(
AAφAAT

A − GφGGT
)
yi + λ (23)

=
N∑

i=1

yT
i (−φ22G

[
φAw
−1

]

·
[
wT φT

A −1
]
GT )yi + λ (24)

= −φ22

N∑
i=1

(
yT

i G

[
φAw
−1

])2

+ λ (25)

= −φ22

N∑
i=1

(
yT

i AAφAw − yT
i al

)2 + λ. (26)

2) For exclusion cases, calculate JA′\l ′ − JA′ when φA′ is
known

From (18), we have

φA = φ11 − φ−1
22 φ12φ21 . (27)

By substituting A′ and l′ with A ∪ l and l, respectively, from
(25) and (19), we have

JA′\l ′ − JA′

= JA − JG (28)

= φ22

N∑
i=1

(
yT

i G

[
φAw
−1

])2

− λ (29)

= φ−1
22

N∑
i=1

(
yT

i G

[
φ22φAw
−φ22

])2

− λ

= φ−1
22

N∑
i=1

(
yT

i G

[
−φ12
−φ22

])2

− λ

= φ−1
22

N∑
i=1

(
yT

i G

[
φ12
φ22

])2

− λ. (30)

Finally, the acceleration version of the BSBR algorithm can be
summarized as follows: 1) test all replacements with the help of
(26) for inclusion cases and (30) for exclusion cases, then find
the best, or deepest-descent one. 2) Update φ with the help of
(22) for inclusion cases or (27) for exclusion cases.

APPENDIX B
NEGATIVE BINOMIAL DISTRIBUTION AND DISPERSION

PARAMETER d

The negative binomial distribution describes the probabil-
ity distribution of the number of successes S in a sequence of
Bernoulli trials before f number of failures occurs. If b de-
notes the probability of success in each trial, we say the number
of successes S follows the negative binomial distribution with
parameter f and b, with probability mass function

pNB(s; f, b) = Pr(S = s) =
(

s + f − 1
s

)
(1 − b)f bs . (31)



936 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 3, MARCH 2014

The mean and variance of S are μNB = bf
1−b and σ2

NB = bf
(1−b)2 ,

respectively. For fixed μNB and σ2
NB , we have estimate f =

μ2
NB

σ 2
NB −μNB

. The dispersion parameter d is defined as the reciprocal

of f , i.e., d = 1
f = σ 2

NB −μNB

μ2
NB

. So for fixed μNB , the variance

to mean ratio σ 2
NB

μNB
= dμNB + 1 could be tuned by dispersion

parameter d.
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